阅读历史 |

第181章 用世界级数学难题来检验自己的学习(1 / 2)

加入书签

第181章用世界级数学难题来检验自己的学习

向德利涅教授请了一周的假期后,徐川潜在宿舍中整理着米尔扎哈尼教授留给他的稿纸。

这次整理,就不是粗略的过一遍了。

而是详细的去学习这些稿件中的知识,将其吸收转化成自己的智慧。

一名菲尔兹奖临终前的遗留,尽管只是一部分,也足够一个普通的数学家研究数年甚至是半生了。

对于徐川而言,这些遗留的稿纸中的计算并不是什么珍贵的东西,有数学基础,很多人都能计算推衍出来。

但这些公式与笔迹中遗留的思想和数学方法与路线,却弥足珍贵。

这些东西,哪怕还未成型,仅仅只是一些思路,也是很多数学家终一生都不见得能做出来的成果。

毕竟在所有的自然科学中,若要说依赖天赋的程度,数学无疑是站在金字塔尖的独一档。

哪怕是物理和化学,在依赖天赋的程度上都略逊色于数学。

可以说没有什么其他学科比数学更吃天赋了。

这是一门需要强大逻辑思维才能‘真正’学好的科目。

数学问题往往需要你发挥一定的创造力,从而解决陌生的问题。

如果老师的水平不够,而你又没能自己找到正确的方法和方向,很有可能白努力,越学越崩溃。

不止要有正向思维还要有逆向思维,在每个知识类别都有很多的公式,而这些公式之间却还有着巧妙的联系;记忆、计算、论证、空间、灵活、转变、各种你能在其他科目上找到的技巧几乎全部都会在数学上体现。

很多网友说,被数学支配的恐惧与年龄无关,从小时候自己学习怕,长大后辅导孩子依旧还怕。

也有网友说,人被逼急了什么事都能做得出来,数学题除外。

尽管这只是一些玩笑话,但数学确实是一门没有天赋、无法学好的学科。

或许伱能在大学之前,依靠各种题海战术,名师的讲解拿到高考的满分,但进入大学或者更深入的学习后,你很快就会跟不上节奏。

哪怕费再多的时间,尽最大努力,也不一定能理解某些数学主题的含义,也无法学习应用那些比高中更复杂的定理和公式。

比如勾股定理,这是进入初中就会学习的东西。

勾三股四弦五。

这是很多人的回忆。

然而很多人也就记住了这一句,这是最常见的勾股数。

但是后面呢

(5,12,13)(7,24,25)(9,40,41,)2n+1,2n2+2n,2n2+2n+1

这些是最最最基础的数学,也不知道还有多少人记得。

恐怕十分之一的人都没有,更别提与勾股数相关联的其他数学公式定理与数据了。

如果在数学上没有天赋,学习起数学来,恐怕会相当痛苦。

那种一堂课掉了一支笔,捡起来后,数学就再也没跟上过节奏的,也不是什么离奇的事情。

宿舍中,徐川一边整理着米尔扎哈尼教授留给他的稿纸,同时也在整理着自己近半年来所学习的一些知识。

“代数几何的一个基本结果是:任意一个代数簇可以分解为不可约代数簇的并。这一分解称为不可缩的,如果任意一个不可约代数簇都不包含在其他代数簇中。”

“而在在构造性代数几何中,上述定理可以通过ritt-吴特征列方法构造性实现,设s为有理系数n个变量的多项式集合,我们用zero表示s中多项式在复数域上的公共零点的集合,即代数簇。”

“.”

“如果通过变量重新命名后可以写成如下形式:

a=iyd+y的低次项;

a=iyd+y的低次项;

“ap=ipyp+yp的低次项。”

“.设as={a1,ap}、j为ai的初式的乘积.对于以上概念,定义sat={p|存在正整数n使得jnp∈}”

稿纸上,徐川用圆珠笔将脑海中的一些知识点重新写了一遍。

今年上半年,他跟随着的德利涅和威腾两位导师,学到了相当多的东西。

特别是在数学领域中的群构、微分方程、代数、代数几何这几块,可以说极大的充实了自己。

而米尔扎哈尼教授留给他的稿纸上,有着一部分微分代数簇相关的知识点,他现在正在整理的就是这方面的知识。

众所周知,代数簇是代数几何里最基本的研究对象。

而在代数几何学上,代数簇是多项式集合的公共零点解的集合。历史上,代数基本定理建立了代数和几何之间的一个联系,它表明在复数域上的单变量的多项式由它的根的集合决定,而根集合是内在的几何对象。

20世纪以来,复数域上代数几何中的超越方法也有重大的进展。

例如,德拉姆的解析上同调理论,霍奇的调和积分理论的应用,小平邦彦和斯潘塞的变形理论等等。

这使得代数几何的研究可以应用偏微分方程、微分几何、拓扑学等理论。

而这其中,代数几何的核心代数簇也被随之应用到其他领域中,如今的代数簇已经以平行推广到代数微分方程,偏微分方程等领域。

但在代数簇中,依旧有着一些重要的问题没有解决。

其中最关键的两个分别是‘微分代数簇的不可缩分解’和‘差分代数簇的不可约分解’。

尽管ritt等数学家早在二十世纪三十年代就已经证明:任意一个差分代数簇可以分解为不可约差分代数簇的并。

但是这一结果的构造性算法一直未能给出。

简单的来说,就是数学家们已经知道了结果是对的,却找不到一条可以对这个结果进行验算的路。

↑返回顶部↑

书页/目录

科幻灵异相关阅读: 我爹是宋江:宋江私生子传奇 你好,心上人 转世重生,我成为东南亚之王 我的游戏穿越系统 心声泄露,携系统同闯架空王朝 叶罗丽:水起潮汐,月语清漓 九叔:求稳,只想娶妻过日子 都市修行奇遇记 花滑:冰上圆舞曲 金手指泛滥,我靠复制入圣超凡 年代快穿:悲惨炮灰女配逆袭了 萝莉与校花的贴贴生活 军官老公身体好,八零辣妻上瘾撩! 奥特:决定从核污开始当BOSS 丧尸爹,炮灰妈,末世冤种凑一家 灵籁 修仙之坠入凡尘 创神纪第二部:天歌 四合院重生,大国科技工匠 邪龙出狱:我送未婚妻全家升天! 没有阿罗娜的我只能使用空降系统 斗罗2:唐舞桐她姐靠凶名成神 心理分析者 魔道仙徒 重生后绑定系统,开启开挂的人生 长生,从被女修蹭灵脉开始 人在战俘营,开局建议抗美援朝! 载酒入青云,悍刀破九霄 碧蓝:养了一群冲官逆女 乡村最美寡嫂 王者归来之一代天骄 列车求生:无挂求生 取消我高考?研发六代战机震惊科学界! 兰若仙缘 囚我三年?当你后爸不过分吧 天命败家子 王妃孟浪难改,全京城替她红脸 重生六零:我带弟弟妹妹奔小康 快穿之病娇大佬宠上瘾 小奶包被赶下山拯救家族造福人类 重生后成了权臣掌中娇 全球守护灵:开局获得东皇帝俊 香江1985之科技之王 重生我被断袖王爷使劲追 夜钓钓浮尸,我却扛回逃跑的女尸 重生87,我带弟兄们江湖称雄 南洋小道士 逆天道,召异兽,弃女她虐渣成瘾 我的娘子是穷鬼女帝 崖山海战,救人复国,征服天下 末日小可怜的逆袭之旅 绝世太极 满级假千金为国出征:老大等等我 村色迷人 恶恐式死亡游戏 斗罗:百年传奇之我是尘心二叔 大召荣耀 柯南,完不成的救赎 系统伴我成长,助我无敌永生 济公传奇